Substituted Aza and Aza-Thia Macrocycles: An Example of a Calamitic Macrocyclic Metallomesogen

FRANCESCO NEVE* and MAURO GHEDINI

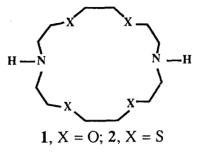
Dipartimento di Chimica, Università della Calabria, I-87030 Arcavacata di Rende (CS), Italy

(Received: 9 December 1992; in final form: 24 March 1993)

Abstract. The new bis-4-(hexyloxy)benzamide and bis-4-(dodecyloxy)benzamide derivatives of macrocyclic ligands [18]aneN₂O₄ (L_1 and L_2) and [18]aneN₂S₄ (L_3 and L_4) have been prepared and characterized by ¹H and ¹³C NMR spectroscopy, differential scanning calorimetry and optical microscopy. The nonmesogenic ligands L_3 and L_4 react with [Pd(CH₃CN)₄][BF₄]₂ to give the cation-ic complexes [Pd(L_3)][BF₄]₂ and [Pd(L_4)][BF₄]₂. [Pd(L_4)][BF₄]₂ shows mesomorphic behaviour affording a smectic mesophase.

Key words: Metallomesogens, liquid crystals, aza-thia macrocycles, azacrowns.

1. Introduction


The challenge of making metal complexes with mesogenic properties is often doubled by the need for appropriate new ligands. Although thermotropic liquid crystallinity is not a necessary requirement for ligands to be used in complexation experiments, some conditions must be fulfilled in order to get metallomesogens [1].

The induction of new mesomorphic phases in saturated macrocyclic ligands was realized by Lehn *et al.* [2] by the introduction of long lateral chains into macrocyclic polyamines. *N*-Acylated hexacyclene derivatives with one-chain substituents were found to exhibit mesogenic behaviour and the mesophase structure was described either as 'tubular' *columnar discotic* [2-4] or *smectic* [5], and more recently as *hexagonal columnar* [6]. The same approach was followed to prepare acylated [3, 4, 7, 8] and sulfonated [3] derivatives of cyclic tri- and tetramines, which sometimes displayed discotic mesophases [7, 8]. Metal ion complexation by *N*-substituted non-mesogenic polyamines has been proved to be another important way to induce mesophase formation [9, 10].

If one wants to pursue the formation of prolate instead of flat, plate-like molecules (either ligands or complexes), bibracchial lariat ethers [11] and their analogues are a good starting point. Substitution at the secondary nitrogen sites of the appropriate diazacrown ether can indeed afford molecules which, in principle,

^{*} Author for correspondence.

could show mesomorphic behaviour depending on the length, flexibility, and tail structure. With this objective in mind we proceeded to synthesize some bis{p-(alkyloxy)benzoyl} derivatives of the mixed-donor macrocycle [18]aneN₂O₄ (1).

Our strategy was to take advantage of the well-documented reactivity of azacrown compounds [12] to build up functionalized macrocycles with an elongated shape. Subsequent extension of the synthetic scheme to the diazatetrathia macrocycle 18[ane]N₂S₄ (2) would result in the formation of ligands with potentially good ability for complexation of *d*-block elements. In the present study we report on the synthesis of the acylated derivatives of 1 and 2. Complexation studies with the nonmesogenic thioether macrocycles also demonstrate that liquid crystallinity can be achieved through molecular recognition.

2. Experimental

All reactions were performed under a dry argon atmosphere in freshly distilled solvents. Anhydrous N, N-dimethylacetamide (DMA, Aldrich), 4-(dimethylamino)-pyridine (DMAP, Aldrich), 4-(hexyloxy)benzoyl chloride (Aldrich), and 1,10-diaza-4,7,13,16-tetrathiacyclooctadecane (**2**, [18]aneN₂S₄) (Lancaster) were used as received. 1,10-Diaza-4,7,13,16-tetraoxacyclooctadecane (**1**, [18]aneN₂O₄) [13], 4-(dodecyloxy)benzoyl chloride [4], and [Pd(CH₃CN)₄][BF₄]₂ [14] were synthesized according to the literature.

¹H and ¹³C NMR spectra were recorded on a Bruker WH 300 spectrometer with internal tetramethylsilane as reference. IR spectra were recorded on a Perkin-Elmer 1330 spectrometer. Conductivity measuremens were carried out using an LKB 5300 B Conductolyser conductivity bridge. Elemental analyses were performed at the Microanalytical Laboratory of our department

X-ray diffraction measurements were performed with an INEL CPS 120 powder diffractometer using Ni filtered CuK_{α} radiation ($\lambda = 1.54$ Å) strongly collimated with an appropriate slit system. Heating was achieved by a hot stage whose accuracy and stability were $\pm 0.5^{\circ}$ C and $\pm 0.1^{\circ}$ C, respectively.

Optical textures were observed with a Zeiss Axioskop polarizing microscope equipped with a Linkam CO 600 heating stage and temperature control. Transition temperatures were measured by differential scanning calorimetry (DSC) with a Perkin Elmer DSC-7 instrument operating at a scanning rate of 10°C/min.

SUBSTITUTED AZA AND AZA-THIA MACROCYCLES

2.1 GENERAL PROCEDURE FOR ACYLATION REACTIONS

As preparations of the acylated ligands L_{1-4} are similar a typical procedure is reported only for L_2 .

2.1.1. 1,10-Bis[(4-dodecyloxy)benzoyl]-1,10-diaza-4,7,13,16-tetraoxacycloocta-decane (L_2)

DMAP (0.184 g, 1.51 mmol) and 1 (0.17 g, 0.68 mmol) were dissolved in dry DMA (10 mL) and the reaction vessel cooled to 0°C. A solution of 4-(dodecyloxy)benzoyl chloride (0.460 g, 1.42 mmol) in dichloromethane (10 mL) was then added dropwise over 30 min. The formation of white solid was observed during the addition. After addition the reaction mixture was heated at reflux temperature for 72 h. The mixture was then allowed to cool, filtered and concentrated in vacuo. The residue was taken up with chloroform (30 mL), extracted twice with saturated NaCl solution, dried over anhydrous Na₂SO₄ and evaporated to a viscous vellowish oil which solidified on standing. Purification of the product was achieved by silica gel chromatography using 1% methanol/dichloromethane as eluent and recrystallization from dichloromethane/n-hexane (2 : 10) at -20° C. Yield 60%. Anal. Found: C, 71.40; H, 9.72; N, 3.50. Calc. for C₅₀H₈₂N₂O₈: C, 71.66; H, 9.85; N. 3.34. IR (KBr): 2910(s), 2844(s), 1612(s), 1506(m), 1460(s), 1426(s), 1279(m), 1236(s), 1132(s), 1032(s), 830(s), 761(m), 624(m) cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 298 K): δ 0.92 (t, 6 H, CH₃), 1.29 (m, 36 H, (CH₂)₉), 1.60 (m, 4 H, O-CH₂-CH₂), 3.28 (br s, 8 H, N-CH₂-CH₂), 3.59 (t, 4 H, O-CH₂), 3.56-3.66 (m, 16 H, CH2-O-CH2), 6.78 (d, 4 H, arom. 3,5), 7.49 (d, 4 H, arom. 2,6). ¹³C{¹H} NMR (75.47, C₆D₆, 298 K): δ 14.97, 23.74, 27.08, 30.25, 30.44, 30.69, 30.74, 32.97, 49.71 (br), 68.74, 71.03, 71.62, 115.06, 130.05, 130.06, 161.11, 172.26. In CDCl₃ the carbon resonance which can be assigned to N-CH₂ appears as two distinct broad signals at 48.60 and 49.92 ppm.

2.1.2. 1,10-Bis[(4-hexyloxy)benzoyl]-1,10-diaza-4,7,13,16-tetraoxacycloocta-decane (L_1)

Reflux time: 72 h. Yield 58%. Anal. Found: C, 68.30; H, 8.83; N, 4.05. Calc. for $C_{38}H_{58}N_2O_8$: C, 68.30; H, 8.71; N, 4.18. IR (neat): 2930(s), 2858(m), 1610(s br), 1508(m), 1453(s), 1410(s), 1285(s), 1240(s), 1122(s), 1074(s), 1008(s), 840(s), 760(m) cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 333 K): δ 0.87 (t, 6H, CH₃), 1.18–1.29 (m, 12 H, (CH₂)₃), 1.56 (m, 4 H, O—CH₂—CH₂), 3.32 (s, 8 H, N—CH₂—CH₂), 3.64 (t, 4 H, O—CH₂), 3.59–3.69 (m, 16 H, CH₂—O—CH₂), 6.77 (d, 4 H, arom. 3,5), 7.50 (d, 4H, arom. 2,6). ¹³C{¹H} NMR (75.47, C₆D₆, 298 K): δ 14.82, 23.57, 26.67, 30.14, 32.51, 49.50 (br), 68.71, 71.04, 71.62, 115.06, 130.04, 130.60, 161.11, 172.26.

2.1.3. 1,10-Bis[(4-hexyloxy)benzoyl]-1,10-diaza-4,7,13,16-tetrathiacyclooctadecane (L_3)

Reflux time: 24 h. Yield 53%. Anal. Found: C, 61.93; H, 7.96; N, 3.84. Calc. for $C_{38}H_{58}N_2O_4S_4$: C, 62.09; H, 7.96; N, 3.81. IR (neat): 2930(s), 2862(m), 1610(s), 1592(s), 1501(m), 1454(s), 1412(s), 1342(m), 1288(s), 1241(s), 1168(s), 1018(s), 840(s), 762(m) cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 298 K): δ 0.91 (t, 6 H, CH₃), 1.20–1.36 (m, 12 H, (CH₂)₃), 1.61 (m, 4 H, O—CH₂—*CH*₂), 2.67 (v br *s*, 16 H, CH₂—S—CH₂), 3.60 (v br *s*, 8 H, N—*CH*₂—CH₂), 3.63 (t, 4 H, O—CH₂), 6.83 (d, 4 H, arom. 3,5), 7.49 (d, 4 H, arom. 2,6). ¹³C{¹H} NMR (75.47, C₆D₆, 298 K): δ 14.63, 23.36, 26.47, 29.94, 31.68 (br), 32.32, 33.67, 49.50 (br), 68.63, 115.05, 129.76, 129.84, 161.17, 172.10.

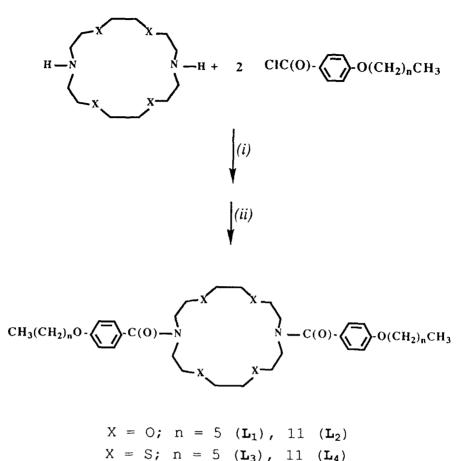
2.1.4. 1,10-Bis[(4-dodecyloxy)benzoyl]-1,10-diaza-4,7,13,16-tetrathiacyclo-octadecane (L_4)

Reflux time: 20 h. Yield 64%. Anal. Found: C, 66.15; H, 9.14; N, 3.17. Calc. for $C_{50}H_{82}N_2O_4S_4$: C, 66.47; H, 9.15; N, 3.10. IR (KBr): 2916(*s*), 2851(*s*), 1612(*s*), 1594(*m*), 1500(*m*), 1458(*s*), 1402(*m*), 1341(*m*), 1294(*s*), 1243(*s*), 1234(*m*), 1166 (*s*), 1017(*s*), 839(*s*) cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 298 K): δ 0.96 (*t*, 6 H, CH₃), 1.33 (*m*, 36 H, (CH₂)₉), 1.65 (*m*, 4 H, O—CH₂—*CH*₂), 2.68 (v br *s*, 16 H, CH₂—S—CH₂), 3.63 (v br *s*, 8 H, N—*CH*₂—CH₂), 3.65 (*t*, 4 H, O—CH₂), 6.84 (*d*, 4 H, arom. 3,5), 7.48 (*d*, 4 H, arom. 2.6). ¹³C{¹H} NMR (75.47, C₆D₆, 298 K): δ 14.99, 23.74, 27.08, 30.24, 30.45, 30.68, 30.70, 30.74, 31.82 (br), 32.98, 33.83, 49.8 (v br), 68.83, 115.22, 129.94, 130.06, 161.36, 172.32.

2.1.5. $\{1, 10\text{-}Bis[(4\text{-}hexyloxy)benzoyl]-1, 10\text{-}diaza-4, 7, 13, 16\text{-}tetrathiacycloocta-decane}\}$ palladium(II)tetrafluoroborate [Pd(L₃)][BF₄]₂

[Pd(CH₃CN)₄][BF₄]₂ (0.07 g, 0.16 mmol) was dissolved in acetonitrile (4 mL) and the solution was added by cannula to a stirring solution of L₃ (0.117 g, 0.16 mmol) in dichloromethane (3 mL). Instantly the colourless solution turned yellow. The solution was allowed to stir for 1 h. Then the solvent was partially removed and diethyl ether added dropwise to give a pale yellow solid which was recrystallized from nitromethane-diethyl ether. Yield 65%. *Anal. Found:* C, 45.45; H, 5.75; N, 2.98. *Calc.* for C₃₈H₅₈B₂F₈N₂O₄PdS₄: C, 44.96; H, 5.76; N, 2.76. Λ_M(9 × 10⁻⁴ M in acetone) 264.9 Ω⁻¹ mol⁻¹ cm². IR (KBr): 1604 (C=O), 1045 cm⁻¹ (BF₄⁻). ¹H NMR (300 MHz, CD₃NO₂, 298 K): δ 0.87 (t, 6 H, CH₃), 1.31–1.47 (m, 12 H, (CH₂)₃), 1.77 (m, 4 H, O—CH₂—*CH*₂), 3.47 (br m, 16 H), 3.80 (br m, 4 H), 4.04 (t, 4 H, O—CH₂), 4.32 (br, obscured by solvent peak), 7.03 (d, 4 H, arom. 3,5), 7.60 (br d, 4 H, arom. 2,6). ¹³C{¹H} NMR (75.47, CD₃NO₂, 298 K): δ 14.50, 23.72, 26.83, 30.29, 32.76, 39.24 (br, CH₂—S—CH₂), 46.61 (br, N—CH₂), 69.89 (O—CH₂), 116.29 (arom. C_{3,5}), 128.10 (arom. C₁), 130.73 (arom. C_{2,6}), 162.94 (arom C₄), 174.58 (C=O). 2.1.6. $\{1, 10\text{-}Bis[(4\text{-}dodecyloxy)benzoyl]-1, 10\text{-}diaza-4, 7, 13, 16\text{-}tetrathiacyclo-octadecane}\ palladium(II)tetrafluoroborate [Pd(L_4)][BF_4]_2$

A solution of $[Pd(CH_3CN)_4][BF_4]_2$ (0.08 g, 0.18 mmol) in acetonitrile (5 mL) was added to a solution of L₄ (0.160 g, 0.18 mmol) in dichloromethane (10 mL). A bright yellow solution was immediately obtained. After 1.5 h stirring the solvent was removed and the greenish yellow solid residue was washed with diethyl ether, filtered off, and vacuum dried. Recrystallization from acetonitrile-diethyl ether afforded the product in 76% yield. *Anal. Found:* C, 50.60; H, 6.90; N, 2.46. *Calc.* for C₅₀H₈₂B₂F₈N₂O₄PdS₄: C, 50.75; H, 6.98; N, 2.37. Λ_M (8.5 × 10⁻⁴ M in acetone) 275.1 Ω^{-1} mol⁻¹ cm². IR (KBr): 1615 (C=O), 1050 cm⁻¹ (BF₄⁻). ¹H NMR (300 MHz, CD₃CN, 298 K): δ 0.89 (*t*, 6 H, CH₃), 1.25–1.47 (*m*, 36 H, (CH₂)₉), 1.81 (*m*, 4 H, O—CH₂—*CH*₂), 3.35 (br *m*, 16 H), 3.78 (br *m*, 8 H), 4.03 (*t*, 4 H, O—CH₂), 4.06 (br *m*), 7.01 (*d*, 4 H, arom. 3,5), 7.57 (br *d*, 4 H, arom. 2,6). ¹³C{¹H} NMR (75.47, CD₃NO₂, 298 K): δ 13.50, 22.69, 26.06, 29.21, 29.43, 29.48, 29.68 (br), 31.98, 38.23 (br, CH₂—S—CH₂), 45.45 (br, N—CH₂), 68.76 (O—CH₂), 115.15 (arom. C_{3,5}), 126.93 (arom. C₁), 129.64 (arom. C_{2,6}), 161.78 (arom C₄). The C=O resonance was not resolved.


3. Discussion

3.1 LIGAND SYNTHESIS

Derivatives of [18]-aneN₂O₄ (1) with two appended sidearms have been prepared by several different methods [15]. Direct acylation of 1 in dichloromethane dimethylacetamide (DMA) in the presence of 4-(dimethylamino)pyridine (DMAP) affords the bis(amides) L_1 and L_2 (Scheme I).

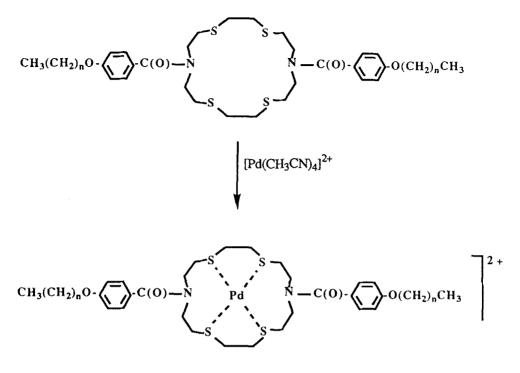
Due to the possibility of inversion of the nitrogen atoms, L_1 and L_2 should be highly flexible ligands. The ¹H NMR spectra of L_1 and L_2 show a temperature dependence which may be attributed to conformational changes of the macrocycles in solution. Figure 1 shows the spectrum of L_1 in benzene- d_6 . The presence of sharp signals for the aromatic protons indicates that rotation about the amide N-C(O)bonds is fast on the NMR time scale over the whole temperature range. The absence of a restricted rotation about the amide C-N bonds [4, 9, 16] is confirmed by ${}^{13}C{}^{1}H$ NMR spectroscopy. The ${}^{13}C{}^{1}H$ NMR spectra of L_1 and L_2 in C_6D_6 at 298 K show a single sharp signal at about 130 ppm which can be assigned to the aromatic carbon atoms ortho to the amide function $(C_{2,6})$. Moreover, the ¹³C{¹H} NMR spectrum of L_1 (wherein assignment is much easier than for L_2) includes a broad signal at 49.50 ppm, assigned to the α -carbon atoms, and two sharp signals at 71.04 and 71.62 ppm which are assignable to the β and γ pairs of carbon atoms. Noteworthy, the inequivalence of the α and α' carbons is observed in the ${}^{13}C{}^{1}H$ NMR spectrum of L_2 in CDCl₃ at 298 K with no other consequence on the remaining carbon resonances (see Experimental section).

Compounds L_1 and L_2 had no detectable mesophases as shown by DSC and

X = 5, 11 = 5 (113), 11 (114)

Scheme I. (i) CH_2Cl_2/DMA , DMAP, 0°C; (ii) reflux.

polarizing microscopy. Amide L_1 shows a crystal-isotropic transition at 86°C (ΔH = 72.74 kJ mol⁻¹), while the higher homologue L_2 has a melting temperature of 86–87°C (ΔH = 85.27 kJ mol⁻¹).


Macrocycles L_1 and L_2 are of course of no use for coordination of transition metals and could be viewed as prototypical models for more versatile ligands.

Substitution of oxygen for sulfur in the cycle backbone of 1 gives the mixed Sand N-donor macrocycle [18]aneN₂S₄ (2) and its N, N'-disubstituted derivatives are very effective in binding soft transition metal ions [18]. Reported side arms range from simple alkyl or acyl substituents [19], to ferrocenylmethyl [20] or diphenylphosphinomethyl [21].

The novel ligands L_3 and L_4 were prepared using the same experimental procedure followed for L_1 and L_2 . NMR characterization showed that in solution L_3 and L_4 behave in a similar way to the corresponding N, O mixed-donors L_1 and L_2 . The only appreciable difference is that both α and β -carbon atoms of the macro-

Fig. 1. Variable-temperature 300 MHz ¹H NMR spectra of L_1 in benzene- d_6 .

Scheme II.

cycle give rise to broad signals in the room temperature ${}^{13}C{}^{1}H$ NMR spectra of L₃ and L₄.

Both L₃ and L₄ did not show mesomorphic behaviour. L₃ has a melting point of 76°C ($\Delta H = 50.88 \text{ kJ mol}^{-1}$) and goes from the isotropic phase to a glassy room temperature phase. L₄ shows a crystal-isotropic transition at 72°C ($\Delta H = 28.68 \text{ kJ mol}^{-1}$).

3.2 COORDINATION STUDIES

Testing the coordination chemistry of the potentially hexadentate ligands L_3 and L_4 was the next step of our study. Our interest was in metal complexes with four-coordination geometry, which could be obtained for example with Pd(II) and Pt(II) metal centres. The reaction of either L_3 or L_4 with one equivalent of $[Pd(CH_3CN)_4][BF_4]_2$ in dichloromethane-acetonitrile (Scheme II) affords yellow solutions of products which were formulated as $[Pd(L_3)][BF_4]_2$ or $[Pd(L_4)][BF_4]_2$ on the basis of elemental analysis, conductivity, and spectroscopic characterization. Conductivity data are consistent with the presence in solution of 1 : 2 electrolytes [22].

Schröder and coworkers [23] have clearly established that while [18]aneN₂S₄

binds the Pd(II) ion in a distorted octahedral geometry, its N, N'-disubstituted derivative Me₂[18]aneN₂S₄ affords a Pd(II) complex with square-planar coordination at the metal ion. This stereochemical diversity arises from the steric hindrance of the NMe groups which does not allow N-coordination. Therefore, as in the case of [Pd(Me₂[18]aneN₂S₄)][PF₆]₂ [23], the palladium ion in [Pd(L₃)][BF₄]₂ and [Pd(L₄)][BF₄]₂ is tentatively assigned a square-planar geometry with the four S atoms of the macrocycle bound to the metal centre. The ¹³C{¹H} NMR spectrum of [Pd(L₃)][BF₄]₂ in CD₃NO₂ at 298 K exhibits only two resonances at 46.61 and 39.24 ppm assignable to methylene carbons of the eighteen-member ring of L₃ (Figure 2). Both signals are broad suggesting some degree of fluxionality in solution. All other carbon resonances of L₃ however do not show broadening on complexation.

The ¹H NMR spectrum of $[Pd(L_3)][BF_4]_2$ measured in CD₃NO₂ is characterized by very broad signals at δ 3.47–4.32 ppm, assigned to the macrocyclic methylene protons. Interestingly, the signal assigned to the protons *ortho* to the amide function is broader than in the free ligand, thus suggesting some stiffening of the ligand upon complexation. ¹H and ¹³C NMR features for $[Pd(L_4)][BF_4]_2$ are very similar to those discussed above for $[Pd(L_3)][BF_4]_2$.

The thermal behaviour of complexes $[Pd(L_3)][BF_4]_2$ and $[Pd(L_4)][BF_4]_2$ was studied by optical microscopy and differential calorimetry. For $[Pd(L_3)][BF_4]_2$ no mesogenic behaviour was detected. No birefringence or optical textures were indeed observed on heating or cooling. The DSC thermogram of the sample shows a very broad peak centered at 171.5°C ($\Delta H = 51.47$ kJ mol⁻¹) corresponding to the transition to an isotropic liquid melt. Optical microscopy gives a transition temperature of 170°C.

 $[Pd(L_4)][BF_4]_2$ has a more interesting (but not completely understood) thermal behaviour. On heating the formation of a highly viscous birefringent phase (Figure 3a) was observed at 140°C which increases in mobility at 161°C. Clearing was observed at 188°C. On cooling from the isotropic melt bâtonnets [24] began to form at 180°C (Figure 3b). An ill defined texture was obtained after annealing for about 1 h at 170°C (Figure 3c).

The DSC curve corresponding to the first heating shows a broad peak at 165°C ($\Delta H = 1.7 \text{ kJ mol}^{-1}$), followed by a strong broad peak at 191°C ($\Delta H = 26.3 \text{ kJ mol}^{-1}$) (Figure 4a). Cooling the isotropic melt led to a small exotherm at 151°C ($\Delta H = -0.3 \text{ kJ mol}^{-1}$) (Figure 4b). The second heating, performed after a 24 h wait, afforded a featureless DSC curve (Figure 4c), while a small broad peak at 138°C ($\Delta H = -0.1 \text{ kJ mol}^{-1}$) again was detected on cooling (Figure 4d). The absence of a recrystallization process is a plausible explanation for the unusual DSC curves. Thermal instability at the clearing point (partial decomposition was observed after two heating cycles) is another possible cause of abnormal behaviour.

X-ray scattering is the most powerful method of mesophase identification [25]. Thus, low resolution X-ray diffraction studies on $[Pd(L_4)][BF_4]_2$ indicate a solid-mesophase transition at 163°C. The presence of a disordered lamellar mesophase

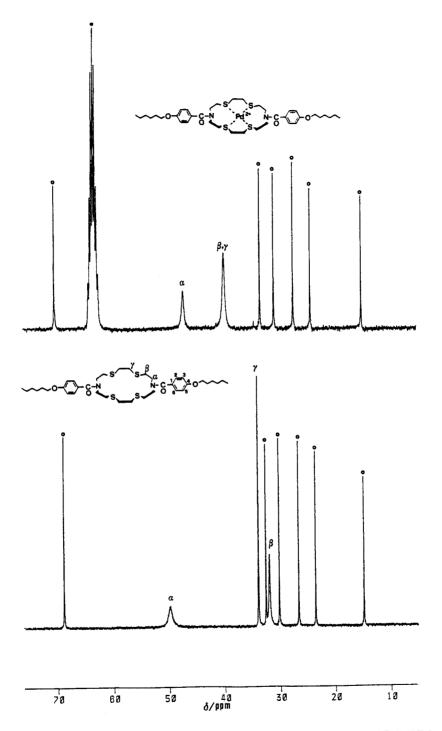
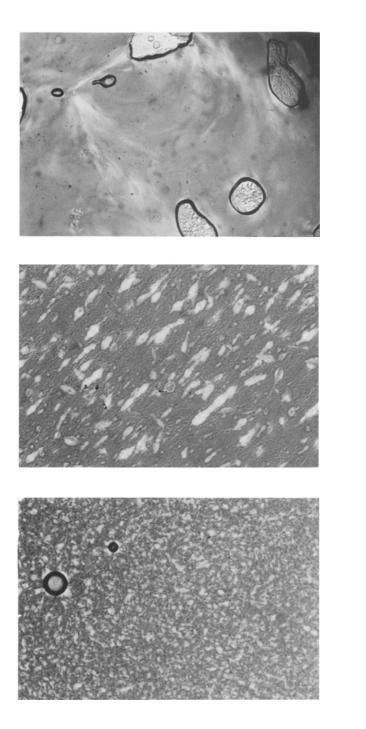



Fig. 2. 75.5 MHz ${}^{13}C{}^{1}H$ NMR spectra of (a) L_3 (in CDCl₃) and (b) $[Pd(L_3)][BF_4]_2$ (in CD₃NO₂/CD₃CN) in the region of aliphatic carbons at room temperature. * Solvent peak. ° Aliphatic tail carbons.

(a)

(b)

Fig. 3. Optical textures of $[Pd(L_4)][BF_4]_2$ between crossed polarizers: (a) on heating the solid, $140^{\circ}C$, $\times 100$; (b) on cooling from the isotropic melt, $175^{\circ}C$, $\times 320$; (c) after annealing for 1 h, $170^{\circ}C$, $\times 160$.

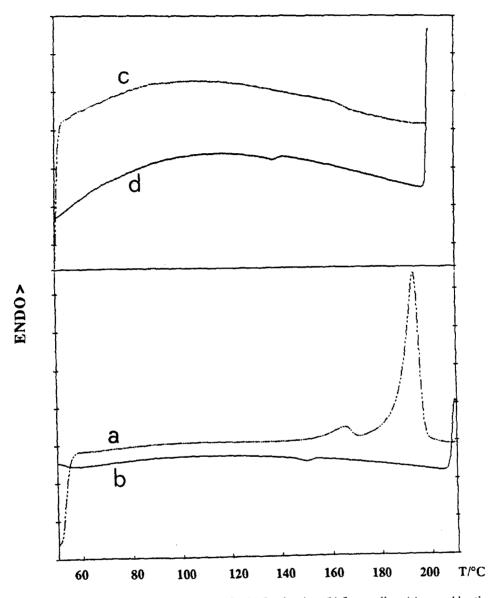


Fig. 4. DSC thermograms for $[Pd(L_4)][BF_4]_2$: (a) first heating; (b) first cooling; (c) second heating; (d) second cooling.

was established by inspection of the diffraction pattern. The only feature is a rather diffuse peak at low θ values which corresponds to a main periodicity of ≈ 53 Å.

4. Conclusions

The absence of mesomorphic behaviour for ligands L_{1-4} is not entirely unexpected. Whereas the choice of the right length/diameter ratio seems to be critical, some considerations to the molecular geometry of the ligands can be given. Although the amide bonds increase the rigidity of the molecule over simple methylene units, both the presence of only one aromatic group on each side of the molecule and the inherent conformational flexibility of the central ring probably contribute to prevent mesophase formation. The possibility of multiple conformational structures is likely to be a less important factor, as new liquid crystals based on the same N_2O_4 macrocyclic backbone as in 1 have been reported [26, 27]. The need for different side groups is therefore apparent.

The formation of complexes derived from L_3 and L_4 is certainly a way of achieving conformational rigidification of the ligands. The exclusive appearance of mesomorphism for $[Pd(L_4)][BF_4]_2$ indicates that, provided the geometrical requirements are fulfilled, the metal ion is the determining factor for both a rigid-core organization (short-range order) and stronger intermolecular interaction (long-range order). Assuming that the mesophase is a calamitic layered one and considering that the approximate length of L_4 along its molecular long axis is of the order of 50–52 Å, the layer thickness of 53 Å is consistent with a molecular packing characteristic of smectic A phases. Based upon these observations, we can also rule out the possibility of interpenetration of smectic layers or chain melting [28].

Preliminary results show that $Cu(I)/L_4$ (1 : 1) ionic complexes seem to exhibit a clear mesogenic behaviour and the occurrence of smectic phases is supported by experimental evidence.

Acknowledgements

We would like to thank Dr. O. Francescangeli (Università di Ancona) for collecting the X-ray data and Prof. R. Bartolino for the optical observations. We also thank the Ministero per l'Università e la Ricerca Scientifica (MURST) for financial support and Johnson-Matthey, Research Centre, Reading, England for a loan of PdCl₂.

References

- (a) A. M. Giroud-Godquin and P. M. Maitlis: Angew. Chem. Int. Ed. Engl. 30, 375 (1991). (b) P. Espinet, M. A. Esteruelas, L. A. Oro, J. L. Serrano and E. Sola: Coord. Chem. Rev. 117, 215 (1992).
- 2. J. M. Lehn, J. Malthête and A. M. Levelut: J. Chem. Soc., Chem. Commun., 1794 (1985).
- 3. C. Mertersdorf and H. Ringsdorf: Liq. Cryst. 5, 1757 (1989).
- 4. D. Tatarsky, K. Banerjee and W. T. Ford: Chem. Mater. 2, 138 (1990).
- 5. S. H. J. Idziak, N. C. Maliszewskvyj, P. A. Heiney, J. P. McCauley, Jr., P. A. Sprengler and A. B. Smith, III: J. Am. Chem. Soc. 113, 7666 (1991).
- (a) S. H. J. Idziak, N. C. Maliszewskvyj, G. B. M. Vaughan, P. A. Heiney, C. Mertersdorf, H. Ringsdorf, J. P. McCauley, Jr. and A. B. Smith, III: J. Chem. Soc., Chem. Commun., 98 (1992).
 (b) J. Malthête, A. M. Levelut and J. M. Lehn: J. Chem. Soc., Chem. Commun., 1434 (1992).

- (a) G. Lattermann: Liq. Cryst. 6, 619 (1989). (b) G. Lattermann: Mol. Cryst. Liq. Cryst. 182B, 299 (1990). (c) G. Lattermann, S. Schmidt and B. Gallot: J. Chem. Soc., Chem. Commun., 1091 (1992).
- 8. J. W. Goodby: personal communication.
- 9. A. Liebmann, C. Mertersdorf, T. Plesnivy, H. Ringsdorf and J. H. Wendorff: Angew. Chem., Int. Ed. Engl. 30, 1375 (1991).
- 10. G. Lattermann, S. Schmidt, R. Kleppinger and J. H. Wendorff: Adv. Mater. 4, 30 (1992).
- 11. G. W. Gokel: Chem. Soc. Rev. 21, 39 (1992) and references therein.
- 12. G. W. Gokel, D. M. Dishong and R. A. Schultz: Synthesis, 997 (1982).
- 13. V. J. Gatto and G. W. Gokel: J. Am. Chem. Soc. 106, 8240 (1984).
- 14. R. R. Thomas and A. Sen: Inorg. Synth. 28, 63 (1990).
- 15. V. J. Gatto, K. A. Arnold, A. M. Viscariello, S. R. Miller, C. R. Morgan and G. W. Gokel: J. Org. Chem. 51, 5373 (1986) and references therein.
- 16. G. C. Saunders: Polyhedron 10, 1877 (1991).
- 17. D. St. C. Black and I. A. McLean: Tetrahedron Lett. 45, 3961 (1969).
- 18. G. Reid and M. Schröder: Chem. Soc. Rev. 19, 239 (1990).
- (a) A. A. Alberts, R. Annunziata and J. M. Lehn: J. Am. Chem. Soc. 99, 8502 (1977). (b) H. L. Ammon, K. Chandrasekhar, S. K. Bhattacharjee, S. Shinkai and Y. Honda: Acta Crystallogr. C40, 2061 (1984).
- P. D. Beer, J. E. Nation, S. L. W. McWhinnie, M. E. Harman, M. B. Hursthouse, M. I. Ogden and A. H. White: J. Chem. Soc., Dalton Trans., 2485 (1991).
- 21. A. L. Balch and F. Neve: unpublished results.
- 22. W. J. Geary: Coord. Chem. Rev. 7, 81 (1971).
- (a) A. J. Blake, G. Reid and M. Schröder: J. Chem. Soc., Dalton Trans., 3363 (1990). (b) G. Reid, A. J. Blake, T. I. Hide and M. Schröder: J. Chem. Soc., Chem. Commun., 1397 (1988).
- 24. D. Demus and L. Richter: Textures of Liquid Crystals, Verlag Chemie, Leipzig (1978).
- 25. D. W. Bruce: *Metal-Containing Liquid Crystals* (Inorganic Materials, Eds. D. W. Bruce and D. O'Hare), pp. 405–490, Wiley, Chichester (1992).
- 26. X. Minggui, Q. Jun and H. Feng: Mol. Cryst. Liq. Cryst. 209, 309 (1991).
- 27. R. P. Tuffin, K. J. Toyne and J. W. Goodby: Proceedings of the 14th International Liquid Crystal Conference, 1992, Pisa, Italy. Contribution A-P59.
- (a) A. M. Levelut, M. Ghedini, R. Bartolino, F. P. Nicoletta, F. Rustichelli: J. Phys. (France) 50, 113 (1989). (b) M. Marcos, M. B. Ros, J. L. Serrano, M. A. Esteruelas, E. Sola, L. A. Oro: Chem. Mater. 2, 748 (1990). (c) M. Ghedini, S. Morrone, D. Gatteschi, C. Zanchini: Chem. Mater. 3, 752 (1991).